If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+14p-24=0
a = 3; b = 14; c = -24;
Δ = b2-4ac
Δ = 142-4·3·(-24)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-22}{2*3}=\frac{-36}{6} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+22}{2*3}=\frac{8}{6} =1+1/3 $
| 13x-11=18x-15=4x+1 | | -17+b/5=15 | | (4y+6)^2=36 | | (2x-45)=(x+30) | | 6p-8=22+p | | 1/2x+3=3 | | (1.5x+x)/2=14.9 | | 2x+1+2x+1=70 | | 3d-12-d=9d+53+d | | 1/2+x+3=3 | | -0.58=(x-63.6)/2.5 | | 2.8/7+0.75=c | | 7j+3=32 | | 5/8x=3/8 | | (1-2v)=-9 | | -3(1-2v)=-9 | | -0.58=(x-63)/2.5 | | 4x+4=7x+23 | | 0=1.3v+0.04v^2-11 | | 3p^2-7p-p=0 | | 8(5-7s)=19 | | 3x-2x+8=8 | | 11=1.3v+0.04v^2 | | 6n^2+18n=108 | | (x−5)^2=180 | | 8+4x8-8=x-5 | | −6+4r=2(r−4) | | |4x+3|=17 | | 2x+2.1=9.9 | | 3(y+4)-(y-2)=-7 | | n+9/7-3/2n=2/7 | | 5/3x=7/2-5/6 |